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Comparison of Traditional and Neural Network 
Approaches to Stochastic Nonlinear 

System Identification 

Kil To Chong* and Alexander G. Parlos** 
(Received July 8, 1996) 

A comparison between neural network and tradit ional  approaches to nonlinear system 

identification is investigated with respect to aspects of  model performance. Two neural network 

models, the state space and input-output  model structures, are considered. A global recurrent 

RMLP and a teacher forcing RMLP are categorized as the state space models, and a global 

feedback FMLP and a teacher forcing FMLP are considered as the input-output  models. In the 

traditional methods an AutoRegressive eXogeneous (ARX) Input model and a Nonlinear 

AutoRegressive eXogeneous (NARX) Input model are considered. Basic algorithms of models 

are described, and simulation results are also presented through the system output response. 

Performance of models is compared based on the Mean-Square -Er ro r s (MSE) .  Noise-added 

sinusoidal, pulse and step signals are chosen as the test inputs for the validation of the obtained 

models. Two different noise levels are augmented to the chosen input signals. 

Key Words: System Identification, Neural Networks, AutoRegressive eXogeneous Input 

Model, Nonlinear AutoRegressive eXogeneous Input Model 

I. In troduct ion  

Traditional and neural network approaches to 

nonlinear system identification methods will be 

considered in this paper. Case studies are also 

presented for comparing convent ional  and 

biologically motivated (artificial neural network 

-based) model structures and parameter estima- 

tion algorithms. 

Indeed, an attempt has been made to present an 

objective comparison by using tradit ional  model 

structures and parameter estimation algorithms 

that are.. popular  and widely available in com- 

mercial software packages, while not considering 

approaches requiring significant effort to code 

and considerable problem-specific tuning. Re- 

view of  the literature reveals the existence and 
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availabili ty of  popular  tradit ional  model struc- 

tures for linear system identification (Ljung, 

1987), whereas algorithms for traditional non- 

linear input-output  model structures are not eas- 

ily available(Chert and Billings, 1989a). 

There have been very few reported studies on 

the use of nonlinear system identification 

approaches for improving the relative accuracy of 

traditional linear model structures. Hence, as of  

yet there is no widespread acceptance of  any one 

particular approach. On the other hand, it is 

believed that Artificial Neural Ne twork(ANNs)  

based model structures offer quite a general 

framework for identifying nonlinear systems with 

very few tuning parameters(Naredra and Parth- 

asarathy, 1991). 

In testing the various approaches in this paper, 

the focus has been on dynamic systems with 

structurally unknown nonlinearities. Thus, even 

though the examples considered do not represent 

any physical system, no apriori  knowledge con- 

cerning their structure has been used in the identi- 
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fication process. cited algorithms(Chen and Billings, 1989b). 

2. Trad i t iona l  A p p r o a c h e s  

Two traditional model structures of the Auto 

-Regressive with eXogeneous Input model 

(ARX) and the Nonlinear ARX(NARX)  are 

considered. These are the model structures chosen 

for comparison with biologically inspired model 

structures presented in the later sections. This, 

however, must not be considered an exhaustive 

study. Our aim has been to present a comparison 

with what appear to be the most prominent tradi- 

tional model structures, without f ine-tuning them 

for specific applications. We define as traditional 

model structures parameterizations that have not 

borrowed ideas from developments in the neur- 

obiological disciplines. In the traditional non- 

linear system identification literature, results for 

two major problem categories have been reported: 

(1) structure identification of nonlinear dynamic 

systems, and (2) parameter estimation of an 

assumed nonlinear structure. Results for structure 

identification of nonlinear systems are scarce, but 

for the reported simple cases they appear to be 

encouraging. In a recent survey paper on structure 

identification of nonlinear systems, encouraging 

results on the structure detection of systems with 

linear dynamics and nonlinear output functions 

have been presented(Harber and Unbehauen, 

1990). The major difficulty with the reported 

approaches has been the large number of possible 

model structure combinations, and the lack of a 

systematic procedure to effectively narrow down 

the available alternatives. Even though a number 

of recent results have been reported for the second 

problem category, the somewhat complex nature 

of the parameter estimation algorithms for non- 

linear model structures has limited their accep- 

tance. There does not yet appear to be a widely 

accepted nonlinear structure and an associated 

parameter estimation algorithm, as is the case, for 

example, with the Auto-Regressive Moving Aver- 

age (ARMA) representation and linear least 

squares estimation. Comparisons with traditional 

nonlinear system identification structures was 

accomplished via software implementation of the 

2.1 Auto-regressive with eXogeneou~ input 
model structure 

One of the simplest input-output model struc- 

tures selected belongs to the class of black-box 

models, resulting from the assumption that the 

function f ( . )  inEq.  (1) i sa lJnearcombinat ion 

of past observations, that is an AutoRegressive 

with eXogeneous input model of Eq. (2): 

y(k) = f l y ( k -  1), y ( k - 2 ) ,  ..., y(k-uy),  
u ( k - l ) ,  u(k 2 ) , . . . , u ( k - n ~ ) ]  

+e(k) (1) 

y (k )+A~y(k  l )+. . .+A~, ,y(k-n~)  
=B~u ( k -  1) + . . . + B ~ b u  (k--  rib) 

+ e ( k )  (2) 

where y ( k ) ,  u ( k ) ,  e (k)  are the output obser- 

vations, input term, and a white noise term, 

respectively. ~z~, is the output time delay and n~ is 

the input time delay of the system. The input 

-output delay ~z~, present in an ARX structure 

and determined by trial and error at the model 

structure selection stage, can be chosen to best fit 

the data. The ARX model structure is one of the 

most widely used model structures in the system 

identification community. Once the parameters 

~5,. n~ are chosen, then the coefficient of the ARX 

model can be determined using, for example, the 

least squares estimation algorithm. This is accom- 

plished by solving an overdetermined set of linear 

equations (Ljung, 1987). 

2.2 Polynomial nonlinear auto-regressive 
with eXogeneous input model structure 

Each output component of the Multi-Input 

Multi Output(MlMO) NARX model structure 

depicted by Eq. (3) can also be represented by 

Eq. (4): 

y (k) = f l y  ( k -  1), "", y ( k -  ny), 

u ( k  I ) ,  "" ,  u ( k -  n~)]  
+e(k) (3) 

y,(k) =og'+ ~ ~ O):~x~,(k)x~2(k) +... 
Jl IJ2-.il 

+ ~,... ~. O),%,x~,(k)...z,(k) 
J l  i J z - J z -  1 

+el(k), i = l , . - . , m  (4) 
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where / is the degree of the polynomial  expan- 

sion and where n = m • 2 1 5  It is sug- 
gested that an equal number of  past input and 

past output vector components are used in the 

expansion of the above model. Furthermore, the 

following expansion terms are defined: 

x~(k )=y~(k -1 ) ,  x2=y~(k-2) ,  ''', 

X . . . . .  (k) =Ym ( k -  ny), 
x . . . . . .  l (k) = u ~ ( k - 1 ) ,  " ' ,  

x , ( K )  = u ~ ( k - n , )  (5) 

To complete a N A R X  model, the parameters, 

0~j, multiplying the monomials in the expansion 

(4) must be estimated. It should be noted that 

even though the utilized model structure is non- 

linear, the parameterization is linear in the 

parameters. The forward-regression orthogonal 

parameter estimation algorithm, a least-squares 

estimator with a model structure selection crite- 

rion reported by Billings et al. (Chen and Billings, 

1989b), has been used to identify models with 

N A R X  structure. As indicated by Billings et al. 

(Billings, Chen and Korean berg, 1989), the same 

algorithm with some modifications can be used to 

identit~r polynomial Nonlinear Auto-Regressive 

Moving Average with eXogeneous Input (NAR- 

MAX) structures. However, for consistency with 

the biologically inspired model structures, only 

N A R X  structures have been considered in this 

paper. Further details on the reasons for im- 

plementing a structure selection criterion in addi- 

tion to parameter estimation can be found in a 

number of papers by Billings et al . (Chen and 

Billings, 1989b; Billings, Chen and Korenberg, 

1989). 

3. N e u r a l  N e t w o r k  A p p r o a c h e s  
Cons idered  

3.1 Feedforward multilayer perceptron 
model structure 

One of the model structures that has been 

motivated by the resurgence of ANN is that of  an 

Feedforward Multilayer Perceptron(FMLP) re- 

ported by Narendra et. al.(1991) with or without 

teacher forcing. In this model structure, past 

observations are used for the teacher forcing 

F M L P  ( T F F M L P ) ,  and past estimates are used 

for the recurrent F M L P  (RFMLP) ,  in the 

approximation of  function f ,  ( �9 ) in Eq. (6): 

y,(k) =f , (y (k-1) ,  "", y ( k -  ny), u (k), 
u ( k - l ) ,  '" ,  u(k-n~,))+ei(k) (6) 

It is assumed that the input and the ,output layers 

have linear discriminatory functions and no 

biases. The inputs to the first layer, i. e. the inputs 

to the network, can be defined by the vector (7). 

Considering the special structure of  the input and 

output layers, and in view of Eq. (8), the input 

-output  equations for a single hidden layer net- 

work can be expressed by Eqs. (9) and (10). 

Equations (9) and (10) can be combined in the 

compact form (11), which is in the form of  a 

N A R X  model structure: 

-3([1] ( k )  = [y ( k -  1), ' " ,  y ( k -  ny), u (k) ,  
u ( k - l ) ,  ..., u(k--~,,)] r (7) 

IN(l-- l )  ~ . xtl,il(k)=Ftt~ j~=l "~' l 1,j l , j X  l - l , j  ( k )  

- bl~,,)) (8) 

N(1) 
X[2,j] (k) =/~[2]~ n~_i l{'[l,nl[2,JlX[l,n] ( k )  

+ b[2,jl) (9) 

L (  " ) --=xE~,,l(k) 
N(2) 

= ~ wt~.~.~.~)xf~.~ (k) (10) 
j=l 

y , (k )=f , ( y (k -1 ) , . . . , y (k -ny ) ,  u(k), 
u ( k -1 ) , . . . , u ( k -n , ) )+e~(k )  (11) 

where, xl~l (k) is the input to the neural network, 

and xu., l(k) is the output of the j~h node at the 

I th layer. The wl~.iltk.Jl is the weight connection 

between i th node of the I th layer to the jth node of 

the k th layer., bu.,~ is bias the jth node of the 1 th 

layer, Fu) is the activation function of the 1 th 

layer, and yi(k) is the output of the neural 

network. 

The same argument can be extended to a net- 

work with multiple hidden layers. Therefore a 

T F F M L P  and an R F M L P  network can be con- 

sidered as a NARX model structure of the form 

depicted by Eq. (11). This ANN is used as a 
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nonlinear,  input-output  b lack-box model struc- 

ture. 

3.2 Recurrent multilayer perceptron model 
structure 

This model is based on the RMLP network 

reported by Parlos et. a1.(1994). The RMLP 

model structure allows for feedforward links 

among the nodes of neighboring layers, and recur- 

rent and cross-talk links within the hidden layers 

which carry time delayed signals(Chong, 1993). 

If addit ionally the observations are provided to 

the input layer, the model structure becomes a 

teacher forcing RMLP (TFRMLP)  model; other- 

wise if the estimates are fed back then it is a 

globally recurrent RMLP (GRRMLP)  model 

structure. 
The nodes of the G R R M L P  and T F R M L P  

network are both governed by the Eqs. (12) and 

(13) 

N(l) 
Z[L,~I (k) = )2 WE~.~IE~,,IXt~.JJ (k - 1) 

j--I 
N(1 1) 

+ ~,  lA:[l ,,~il[t,i]Xtt-i,jl(k) j= l  

+ bl~,,1 (12) 

xr~.~l (k) =FIzl  (zi~.~l (k))  (13) 

The input and output layers have linear discrimi- 

natory functions and no biases, no recurrency, 

and no cross-talk. The inputs to the first layer of 

the G R R M L P  and T F R M L P  are defined by the 

following vectors: 

x[ll(k) = [u~(k-1 ) ,  u2(k-1) ,  "", Uu(l)(k--1), 
)31(k--1), '" ,  .~t,,(L)(k-- 1)] T (14) 

xt~l(k) =[u~(k-1) ,  u2(k-1) ,  "", ulna(k-I) ,  
y~(k-  1), "", yx(L)(k-1)] r (15) 

respectively. 9k(k )  is the estimate of the neural 

network and yh (k) is the observation. 

For a single hidden layer G R R M L P  and TFR-  

MLP, the input-output  equations can be expres- 

sed as follows: 

IN(2) 
xI2.Jl (k ) = FI21( ,~]-I wt2.,ll2.jlxI2.,~ ( k -  1) 

N(1) 
+ ~.  W[l,PliZ,JlX[l,p](k) p=l 

+ bl2JI) (16) 

N(2) 
xt3.il (k) = ~. w[2.jll3.11x[2.j~ (k) (17) 

j=l  

for j = l .  "". N ( 2 ) .  and i = 1 .  "". N ( 3 ) .  
where N ( l )  is the number of nodes in the /th 

layer. Now defining state vector as: 

x (k) = [xE2.,i ( k ) . - " .  xI2.~(2)j (k) ]T (18) 

and 

X l ( k )  = [ X [ l . l ]  ( k ) ,  "" ,x l l .m( , ) l (k)]  T (19) 

Equations (16) and (17) again can be rewritten 

compactly as Eqs. (20) and (21): 

x ( k ) = g ( x ( k - 1 ) ,  x~(k))  
= g ( x ( k - 1 ) .  u ( k - l ) )  (20) 

y, (k) =x~3,,t (k) + ei (k) 

= W2,3ix(k) + e i ( k )  
= h , ( x ( k ) ,  e i ( k ) )  (21) 

for i = 1 ,  ..-, m, w h e r e g ( . )  and f ( . )  are 
general functions and WJ2.3 is the i th row vector of 

the matrix W2,3 containing all of the feedforward 

weights connecting the hidden layer to the output 

layer. Equations (20) and (21) however, are in 

the state-space form of Eqs. (22) and (23), 

though the state vector x(k) defined in Eq. (18) 

consists of  artificial states, characterizing this 

empirical state space model structure: 

x ( k + l )  = f  ( k , x ( k ) ,  u ( k ) ,  w ( k ) ,  O) 
(22) 

y ( k ) = h ( k , x ( k ) ,  u ( k ) ,  v ( k ) ,  O) (23) 

The same arguments can be extended to a net- 

work with multiple hidden layers. Therefore, a 

G R R M L P  and a T F R M L P  network can be con- 

sidered as an empirical state space model struc- 

ture of the form depicted by Eqs. (22) and (23). 

4. Computer S imulat ion  

The example presented in this paper is for 

demonstrating the system identification capabil- 

ities of several conventional and neural network 

model structures. In identifying models for these 

systems, however, an attempt has been made to 

use only information that would be available 

when investigating a complex nonlinear system. 

Therefore, in this study no information about the 

system order and the nature or severity of the 
nonlinearities being identified has been explicitly 
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used in choosing the structure and size of the 

neural network or of the conventional model 

structure. 

There are some additional general comments 

which can be offered, applicable to all of the 

examples presented in this study. The relative 

Mean Square Error(MSE) have been calculated 

using the following equation: 

Mean- Squared Error 
MSE (e,) :--Target Mean-Squared Deviation 

N P  

(x i l . . , l (k)-y , (k))  2 
k = l  ---- NP (24) 

E (yi(k) - ; , ) ~  
k = l  

When selecting the data set, ~t is important to 

consider the relative mix of  the steady state of 

various transient responses. The analytical non- 

linear system considered is stochastic multi 

- input  mult i -output  system. 

A stochastic MIMO nonlinear system is expres- 

sed by the following states and outputs: 

I 

x~ (k) = 0 . 5  (Xl 2 ( k -  1) ) 

+0.3x2(k -1)  x3(k -1 )  
+O.2u~(k-1)+n~[(k )  (25) 

x2(k) =0.5 (x~(k- 1) )�89 
+ 0.3x3(k-1)  xl ( k - 1 )  
+ 0 . 2 u ~ ( k - 1 ) + n ~ ( k )  (26) 

x3(k) = 0 . 5  (x:~2 (k - 1) ) J 
+0 .3x ;  (k --1) x2 ( k -  1) 

+0.2u'2(k-1)  + nPx~ (k) (27) 

y~(k) = 0 . 5 ( x ~ ( k )  +x2(k) +x3(k ) )  (28) 

y2 (k) = 2  (x~ (k))  2 (29) 

where n~, ~ (k) for i=- 1, 2, 3 is the process noise of 
the system. 

The data set consisted of all possible 25 combi- 

nations of steps with magnitudes 0.125, 0.25, 

0.375, 0.5, as well as the zero step input for both 

input channels(See Fig. I for the input signals). 

Each :signal consists of 15 samples, so that the 

total number of the training dataset becomes 375 

samples. For simulations tried with this data, 

however, model validation shows poor perfor- 

mance of the obtained model. The reason for this 

result iis insufficient data/set  capacity to represent 

the system. So five different pulses of suitable 

0 . 3 ~  - 

O . Z a  - 

o z o  . 

~ o . t a  - 

o t o  - 

o . o e .  

o o o -  

- -  t a p u t  t 
- - -  I n p u t  8 

| o  z o  a a  4 0  

T i m e  S t e p  

Fig. 1 Pulse inputs 

shapes were added to the above data/set ,  each 
containing 40 samples. As a result tlhe total num- 

ber of  samples becomes 575 in the training da ta /  

set. The process noise is zero mean, white Gaus- 

sian noise with 0.02 standard deviation. 

Three tests are performed with unknown sig- 

nals during identification for investigating the 

models '  predictive performance. The first test 

signal is u t ( k ) = 0 . 3 + 0 . 2 s i n ( ~ ) ,  u 2 ( k ) = 0 . 2 ,  

where the step input in the second channel is 

delayed by 5 time steps with respect: to the input 

in the first channel. The pulse inputs used to test 

the identified models are shown in Fig. 1. The 

final test set consists of a step augmented with 

zero mean, white Gaussian noise of 0.1 standard 

deviation. The magnitudes for the steps are 0.3 

and 0.2 for the two input channels, respectively. 

Each test signal is augmented with zero mean, 

white Gaussian noise with 0.02 standard devia- 

tion for simulating a low noise environment, and 

0.08 standard deviation for simulating a high 

noise environment. For  testing the performance of  

the identified models, the system given by Eqs. 

(25) through (29) is simulated with zero mean, 

white Gaussian noise with 0.01 standard devia- 

tion (low noise). Performance of each model is 

measured through the MSEs which are shown in 

Table 1. 

4.1 ARX Model 

The ARX model structure used in this example 

has 406 parameters involved at the initial itera- 

tion. The final structure is as follows: 
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Table 1 Relative mean-squared-errors for models 

Model Sinusoidal Pulse Noise Step 

Structure Input Input Input 

ARX (0" =0.02) ;yl 

ARX (0" =0.02) ;yz 

ARX (0"=0.08) ;y~ 

ARX (0"=0.08);yz 

N A R X  (o'=0.02) ;y~ 

N A R X  (o" =0.02) ;yz 

N A R X  (0- =0.08) ;yl 

NARX (0-=0.08) ;y2 

G R R M L P  (0"=0.02) ;y~ 

GRRMLP (tr ~0.02) ;y2 

GRRMLP (~r ~- 0.08) ;y, 

GRRMLP (o" =0.08) ;y2 

TFRMLP(0"=0.02) ;y~ 

T FR M LP ( 0" = 0.02) ;y2 

TFRMLP(0"=0.08) ;y~ 

TFRM L P ( 0" ~ 0.08) ;yz 

RFMLP3 (0" =-0.02) ;y, 

RFM L P3 ( 0" =-0.02) ;y2 

RFM LP3 ( tr ~ 0.08) ;y, 

RFMLP3(0"=0.08) ; yz 

TFFMLP3 (0"=0.02) ;y, 

TFFMLP3 (0"=0.02) ;yz 

TFFMLP3 (0"=0.08) ;y, 

T F F M  LP3 (0" ~-- 0.08) ;yz 

RFMLP5 (0-~0.02) ;y~ 

RFM LP5 (0" ~ 0.02) ;yz 

RFM LP5 (0" ~ 0.08) ;yl 

RFM LP5 (0"=-0.08) ;yz 

TFFMLP5 (0-=0.02) ;y~ 

TFFMLP5 (o'----0.02) ;Yz 

TFFMLP5 ( 0" = 0.08) ;yt 

TFFMLP5 (0"=-0.08) ;Y2 

3.58E--2 

0 .20E+0 

0.15E+0 

0.88E+0 

3 .11E-2  

9.74E - 2  

0 .16E+0 

0.58E+0 

7 .67E-2  

6 .74E-2  

7.67E--2 

6.74E--2 

4.04E - 2 

8.41E--2 

0 .32E§ 

0.49E+0 

4 .05E-2  

6 .38E-2  

4.05E--2 

6 .38E-2  

8.50E--2 

0.15E+0 

0.60E + 0 

0.97E+0 

0.22E+0 

0.15E+0 

0.22E+0 

0.15E+0 

0.13E+0 

0.12E+0 

0.45E+0 

0.64E+0 

1.53E--2 

0 .13E§ 

0.14E+0 

1.04E + 0 

1.55E--2 

5.62E--2 

0.16E+0 

0.63E+0 

5.66E - 2 

3 .42E-2  

5.66E - 2 

3.42E -- 2 

1 .80E-2 

4.46E 2 

0 .19E§ 

0.34E§ 

0.36E§ 

0.19E+0 

0.36E+0 

0.19E+0 

0.13E+0 

9 .93E-2  

0.63E+0 

0.94E+0 

0.26 E + 0 

0.15E+0 

0.26E+0 

0.15E§ 

0.13E§ 

6 .14E-2  

0.35E+0 

0.37E+0 

5 .35E-2  

0.50E+0 

0.46E§ 

4.45E+0 

4 .81E-2  

0.30E§ 

0.47E+0 

3.31E+0 

0.16E+0 

0.22E+0 

0.16E+0 

0.22E§ 

8.80E - 2 

0.24E+0 

1.25E§ 

3.38E§ 

0.22E+0 

0.16E+0 

0.22E+0 

0.16E+0 

0.16E+0 

0.45E§ 

0.88E+0 

2.47E § 0 

0.27E+0 

0.26E+0 

0.27E+0 

0.26E+0 

0.21E+0 

0.28E+0 

0.97E+0 

2.05E + 0 

y1 (k) = 0. 0801 + 0. 6049y, (k - 1) 

+ 0 . 1 2 3 7 y z ( k - 1 )  

+ 0 . 3 4 4 8 u l ( k -  1) 

+ 0 . 2 6 7 6 u 2 ( k - 1 )  

y2 (k) : - 0 .  0365y~ ( k - 3 8 )  

- 0 .  ! 4 8 9 u l ( k - - 5 )  

+ 0 .  9409y2 ( k -  1) 

+ 0 . 3 3 3 6 u ,  ( k -  1) 

The first output  response o f  the identified A R X  

model  and of  the reference model  for low noise 

envi ronment  test signals are shown in Fig. 2, 

(30) while the second output  responses are shown in 

Fig. 3. For the high noise envi ronment  test signals, 

the first output  responses o f  the identified A R X  

model  and of  the reference model  are shown in 

(31) Fig. 4, and the second output  responses are shown 
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in Fig. 5. The relative MSEs for the first output of 

the ARX model for low noise environment test 

signals, shown in Table 1, are 3.58• l0 2, 1.53• 

10 -2, and 5.35 • 10 2 for the sinusoid, pulse and 

noisy step inputs, respectively. The relative MSEs 

for the second output are 0.20, 0.13, and 0.50 for 

the sinusoid, pulse, and noisy step inputs, respec- 

tively. Also, the relative MSEs for the second 

output of the ARX model for the high noise 

environment test signal are shown in Table I. The 

ARX model gives the highest MSE among the 

proposed models, which indicates the lowest 

performance. 

4.:2 NARX model 

The NARX model structure used in this model 

identification was obtained with the NARX 

model using the forward-regression orthogonal 

method. The number of parameters involved at 

the initial iteration was 695. The model obtained 

is as follows: 

y, (k) =0 .0388+0 .7505yl  ( k -  1) 

+ 0 . 3 3 3 5 9 u l ( k - 1 )  

1.2 

i.O] - - - HklLI llo<lel I 
'~ - -  A~IIp, ie l l  Model . ~ , . �9 , 
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Tlme steps 

Response for high noise environment using 
NARX model first output; top: sinusoidal 
input; middle: ramp input; bottom: step 
input. 

+ 0 . 2 3 4 9 u 2 ( k - 1 )  (32) 

y2 (k) =0.7575y2 ( k -  1) 

+ 0 . 4 5 3 6 y l ( k - 1 ) u ~ ( k - 1 )  (33) 

Every model used in this paper has four different 

output responses; the first and second output for 

both the low noise and the high noise case(as in 

the ARX model). Due to page limit constraints, 

only the second output of the high noise environ- 

ment is presented for each model. The first output 

response of the identified NARX model and of 

the reference model using the high noise environ- 

ment test signals are shown in Fig. 6. The relative 

MSEs of the identified NARX of the low noise 

environment for the first output are 3.11 • 10 -2, 

1.55x 10 -2, 4.81 • 10 2, while for the second out- 

puts they are 9.74• 10 -2, 5.62• 10 -~, and 0.30 for 

the test signals. The performance of the NARX 

model is as good as the RMLP model, and is 

superior to the other models. 

4.3 RMLP models 

Because this is a stochastic identification prob- 

lem, a predictor form of the RMLP must be used. 

This is an RMLP network with the latest output 

in its input layer. The sensed or predicted latest 

output could be used, resulting in two different 

networks. 

If the predicted output is used, then the GRRM- 

LP is obtained. In this example the GRRMLP 

consists of an input layer with 4 nodes of two 

inputs and the two outputs, 2 hidden layers with 

12 and 10 nodes, respectively, and an output layer 

with 2 nodes (4-12-10-2). The 4-12-10-2 GRR- 

MLP network was trained for 3600 cycles, using 

0.01 learning rate for both the weights and the 

biases�9 Training was continued for 1500 cycles 

using a learning rate of 0.001. The second output 

responses of the identified GRRMLP model and 

of the reference model using the high noise envi- 

ronment test signals are shown in Fig. 7. The 

relative MSEs of the identified GRRMLP of the 

low noise environment for both the first output 

are 7.67x 10 2, 5.66x 10 -2, 0.16, and for the sec- 

ond output are 6.74• 10 2, 3.42• 10 -2, 0.22 for 

the sinusoid, pulse and noisy step inputs, respec- 

tively. The relative MSEs for the first output of 
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the identified GRRMLP model for the high noise 

environment test signals are the same as the ones 

reported above, because the G R R M L P  is not 

using the sensed but only the predicted outputs. 

As previously mentioned, an RMLP with 

teacher forcing has exactly the same model struc- 

ture as the GRRMLP,  except that instead of the 

predicted output, the latest sensed output is used 

in the network input layer. This is the TFRMKP 

network. The T F R M L P  used in this example has 

the same architecture as the G R R M L P  discussed 

(4-12-10-2).  The 4-12-10-2 T F R M L P  network 

was trained for 500 cycles, using 0.01 learning rate 

for both the weights and the biases, and it was 

further trained for another 100 cycles with 0.01 

learning rate. The second output responses of the 

identified T F R M L P  and of the reference model 

for high noise environment test signals are shown 

in Fig. 8. The relative MSEs of the identified 
T F R M L P  of the low noise environment for both 

the first output are 4.04• 10 -2, 1.80• 10 -z, 8.80• 
10 -z ttnd the second outputs are 8.41 • 10 ~, 

3.46• 10 -z, 0.24 for the sinusoid, pulse and noisy 

step inputs, respectively. Also, the relative MSEs 

of  the identified T F R M L P  of the high noise 

environment for both the first output are 0.43, 

0.19, 1.25 and for the second output are 0.72, 0.34, 

3.38 for the sinusoid, pulse and noisy step inputs, 

respectively. 

4.4 F M L P  mode l s  

The RFMLP(3 ,  2, 1) uses the feedback of the 

predicted output instead of  the sensed output. It 

consists of an input layer with 10 nodes, 2 hidden 

layers with 15 and 10 nodes, respectively, and an 

output layer with 2 nodes. The 10-15-10-2 

RFMLP(3 ,  2, 1) network has 347 connection 

links, and was trained for 60000 cycles using 

learning rates varying from 0.01 to 0.0001 for the 

weights and the biases. The second output 

responses for high noise environment test signals 

using the obtained RFMLP(3 ,  2, 1) model and of 
the reference model are shown in Fig. 9. The 

relative MSEs of the identified RFMLP(3 ,  2, 1) 

of the low noise environment for both the first 

output are 0.22, 0.26, 0.27 and for the second 

output are 0.15, 0.15, 0.26 for the sinusoid, pulse 
and noisy step inputs, respectively. The relative 
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MSEs for the high noise test signals are the same 

as the ones in the low noise environment, since 

RFMLP(3 ,  2, 1) is not using the sensed but only 

the predicted outputs. 

The T F F M L P ,  which uses three past inputs 

with no feedforward term and two past outputs, is 

denoted T F F M L P ( 3 ,  2, 1). The 10-15-10-2 

T F F M L P ( 3 ,  2, 1) was trained for 45000 cycles 

using learning rates varying from 0.01 to 0.001 for 

the weights and for the biases. The second output 

responses for high noise environment test signals 

using the identified T F F M L P ( 3 ,  2, 1) model and 

of the reference model are shown in Fig. 10. The 

relative MSEs of the identified T F F M L P ( 3 ,  2, 1) 

of the low noise environment for both the first 

output are 0.13, 0.13, 0.21 and for the second 

output are 0.12, 6.14• 10 -2, 0.28 for the sinusoid, 

pulse and noisy step inputs, respectively. The 

relative MSEs of  the high noise environment for 

both the first output are 0.36, 0.35, 0.98 and for 
the second output are 0.52, 0.37, 2.05 for the 

sinusoid, pulse and noisy step inputs, respectively. 

The RFMLP(5.6.0)  consists of an input layer 

with 22 nodes, 2 hidden layers with 12 and 10 
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Fig. 10 Response for high noise environment using 
TFFMLP(3, 2, I) model first output; top: 
sinusoidal input; middle: ramp input; bot- 
tom: step input. 
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nodes, respectively, and an output layer with 2 

nodes. The 22-12-10-2 RFMLP(5,  6, 0) network 

has 428 connection links, and it was trained for 

75000 cycles using learning rates varying from 

0.01 to 0.001 for the weights and for the biases. 

The second output responses for high noise 

environment test signals using the identified 

RFMI_P(5, 6, 0) model and of the reference 

model are shown in Fig. 11. The relative MSEs of 

the identified RFMLP(5,  6, 0) of the low noise 

environment for both the first output are 5.22 • 10 -2, 

0.40, 0.22 and for the second output are 7.08 x 

10 -2, 0.22, 0.13 for the sinusoid, pulse, and noisy 

step inputs, respectively. The relative MSEs for 

the first output of the identified RFMLP(5,  6, 0) 

of high noise environment test signals are same as 

the ones reported above, because the RFMLP(5, 

6, 0) is not using the sensed but only the predicted 

output. 

The TFFMLP(5 ,  6, 0) consists of an input 

layer with 22 nodes, 2 hidden layers with 12 and 

10 nodes, respectively, and an output layer with 2 

nodes (22-12-10-2). The TFFMLP(5 ,  6, 0) was 
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TFFMLP(5, 6, 0) model first output; top: 
sinusoidal input; middle: ramp input: bot- 
tom: step input. 

trained for 60000 cycles using learning rates vary- 

ing from 0.01 to 0.001 for the weight,,; and for the 

biases. The second output responses for low noise 

environment test signals using the identified TFF-  

MLP(5, 6, 0) model and of the reference model 

are shown in Fig. 12. The relative MSEs of the 

low noise environment tbr both the first output 

are 5.22:~: 10 ~, 0.40, 0.22 and for the second 

output are 7.08• l0 2 0.22, 0.13 for the sinusoid, 

pulse and noisy step inputs, respectively. Also the 

relative MSEs of the high noise environment for 

both the first output are 5.22 ~'< 10 ~, 0.40, 0.22 and 

for the second output are 7.07x 10 z, 0.22, 0.13 

for the sinusoid, pulse and noisy step inputs, 

respectively. 

5. Conclusion 

Basic algorithms of the ARX, NARX, FMLP 

and RMLP type are described with a view toward 

the nonlinear system identification of input-out- 

put and state-space model structures. Traditional 

and biologically inspired model structures are 

compared for their effectiveness to identify a 

complex stochastic muhi input multi output non- 

linear system. The ARX and the NARX are the 

conventional model structures used in the com- 

parison. The RMLP(FMLP)  and the RMLP 

(FMLP) with and without teacher forcing are 

used as the biologically motivated nonlinear 

model structures. For the identification of an 

ARX model structure and NARX model, algor- 

ithms for estimating the parameters have been 

programmed and used for this comparison instead 

of using commercially available software. Com- 

parisons of the chosen model is accomplished 

through a stochastic example. The responses of 

the identified models are obtained for three differ- 

ent test signals unknown during the identification 

process. Relative mean squared errors are calcu- 

lated for the numerical comparison. For the sake 

of a fair comparison, the number of connection 

links, and the number of iterations, are carefully 

chosen for all model structures. 

From the stochastic numerical simulations, it is 

possible to postulate that the NARX.. the [=MEP 

and the RMLP models sire good candidate struc- 
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tures for low noise nonlinear system identifica- 
tion, while the FMLP model structures is not as 
effective as the RMLP and the NARX models. 
However, for the high noise environment case the 
RMLP model is the most effective among the 
models considered in this paper. 
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